机器学习与深度学习的区别是什么?
网友回复
深度学习与传统的机器学习最主要的区别在于随着数据规模的增加其性能也不断增长。当数据很少时,深度学习算法的性能并不好。这是因为深度学习算法需要大量的数据来完美地理解它。另一方面,在这种情况下,传统的机器学习算法使用制定的规则,性能会比较好。下图总结了这一事实。
硬件依赖
深度学习算法需要进行大量的矩阵运算,GPU 主要用来高效优化矩阵运算,所以 GPU 是深度学习正常工作的必须硬件。与传统机器学习算法相比,深度学习更依赖安装 GPU 的高端机器。特征处理
特征处理是将领域知识放入特征提取器里面来减少数据的复杂度并生成使学习算法工作的更好的模式的过程。特征处理过程很耗时而且需要专业知识。 在机器学习中,大多数应用的特征都需要专家确定然后编码为一种数据类型。 特征可以使像素值、形状、纹理、位置和方向。大多数机器学习算法的性能依赖于所提取的特征的准确度。 深度学习尝试从数据中直接获取高等级的特征,这是深度学习与传统机器学习算法的主要的不同。基于此,深度学习削减了对每一个问题设计特征提取器的工作。例如,卷积神经网络尝试在前边的层学习低等级的特征(边界,线条),然后学习部分人脸,然后是高级的人脸的描述。更多信息可以阅读神经网络机器在深度学习里面的有趣应用。问题解决方式
当应用传统机器学习算法解决问题的时候,传统机器学习通常会将问题分解为多个子问题并逐个子问题解决最后结合所有子问题的结果获得最终结果。相反,深度学习提倡直接的端到端的解决问题。 举例说明: 假设有一个多物体...点击查看剩余70%
有没有免费让ai自动帮你接管操作电脑的mcp服务?
mcp为啥用Streamable HTTP 替代 HTTP + SSE?
scratchjr有没有开源的前端html网页版本源代码?
多模态大模型能否根据ui交互视频来来模仿写出前端交互动画效果ui代码?
如何用阿里云oss+函数计算fc+事件总线EventBridge+消息队列+数据库+redis缓存打造一个高并发弹性系统?
阿里云函数计算 FC如何在海外节点搭建一个代理网络?
ai studio中gemini build的代码如何发布到github pages等免费网页托管上 ?
如何在cursor、qoder、trae中使用Claude Skills功能?
有没有不用u盘就能重装系统的开源工具?
python如何固定摄像头实时计算停车场停车位剩余数量?


