生成对抗网络(GAN,Generative Adversatial Networks)是一种深度学习模型,近年来无监督学习上最具前景的方法之一。
模型主要通用框架有(至少)两个模块:生成模型(generative)和判别模型(Discriminative)的互相博弈学习产生的相当好的输出。
原始GAN理论中,并不要求G和D都是神经网络,但使用中一般均使用深度神经网络作为G和D。
所以GAN = (生成式模型 + 判别式模型)集两家之所长,生成对抗网络。Generative 生成式模型,Adversarial 对抗,相爱相杀的过程。
在训练过程中,生成网络G的目标就是尽量生成真实的图片去欺骗判别网络D,而D的目标就是尽量把真实图片和G生成的图片区别开来,这样G和D就构成了一个动态的博弈过程。理想状态下,G可以生成足以以假乱真的图片G(z)。对于D来说,它难以判定G生成的图片究竟是不是真实的,一次D(G(z)) = 0.5。
应用在
1、图像生成,目前GAN最常用的地方就是超分辨率任务,语义分割、图像风格化等等。
2、数据增强,例如还原老照片或老的视频,让其更清晰
网友回复
python如何调用openai的api实现知识讲解类动画讲解视频的合成?
html如何直接调用openai的api实现海报可视化设计及文本描述生成可编辑海报?
f12前端调试如何找出按钮点击事件触发的那段代码进行调试?
abcjs如何将曲谱播放后导出mid和wav格式音频下载?
python如何将曲子文本生成音乐mp3或wav、mid文件
python中mp3、wav音乐如何转成mid格式?
js在HTML中如何将曲谱生成音乐在线播放并下载本地?
python如何实现在windows上通过键盘来模拟鼠标操作?
python如何给win10电脑增加文件或文件夹右键自定义菜单?
python如何将音乐mp3文件解析获取曲调数据?