生成对抗网络(GAN,Generative Adversatial Networks)是一种深度学习模型,近年来无监督学习上最具前景的方法之一。
模型主要通用框架有(至少)两个模块:生成模型(generative)和判别模型(Discriminative)的互相博弈学习产生的相当好的输出。
原始GAN理论中,并不要求G和D都是神经网络,但使用中一般均使用深度神经网络作为G和D。
所以GAN = (生成式模型 + 判别式模型)集两家之所长,生成对抗网络。Generative 生成式模型,Adversarial 对抗,相爱相杀的过程。
在训练过程中,生成网络G的目标就是尽量生成真实的图片去欺骗判别网络D,而D的目标就是尽量把真实图片和G生成的图片区别开来,这样G和D就构成了一个动态的博弈过程。理想状态下,G可以生成足以以假乱真的图片G(z)。对于D来说,它难以判定G生成的图片究竟是不是真实的,一次D(G(z)) = 0.5。
应用在
1、图像生成,目前GAN最常用的地方就是超分辨率任务,语义分割、图像风格化等等。
2、数据增强,例如还原老照片或老的视频,让其更清晰
网友回复
python如何实现torrent的服务端进行文件分发p2p下载?
如何在浏览器中录制摄像头和麦克风数据为mp4视频保存下载本地?
go如何编写一个类似docker的linux的虚拟容器?
python如何写一个bittorrent的种子下载客户端?
ai能通过看一个网页的交互过程视频自主模仿复制网页编写代码吗?
ai先写功能代码通过chrome mcp来进行测试功能最后ai美化页面这个流程能行吗?
vue在手机端上下拖拽元素的时候如何禁止父元素及body的滚动导致无法拖拽完成?
使用tailwindcss如何去掉响应式自适应?
有没有直接在浏览器中运行的离线linux系统?
nginx如何保留post或get数据进行url重定向?