什么是数据脱敏
先来看看什么是数据脱敏?数据脱敏也叫数据的去隐私化,在我们给定脱敏规则和策略的情况下,对敏感数据比如
像政府、医疗行业、金融机构、移动运营商是比较早开始应用数据脱敏的,因为他们所掌握的都是用户最核心的私密数据,如果泄露后果是不可估量的。
数据脱敏的应用在生活中是比较常见的,比如我们在淘宝买东西订单详情中,商家账户信息会被用
数据脱敏又分为静态数据脱敏(
静态数据脱敏(
有时我们可能需要将生产环境的数据
这样脱敏后的数据与生产环境隔离,满足业务需要的同时又保障了生产数据的安全。
如上图所示,将用户的真实
动态数据脱敏(
数据脱敏系统可以按照不同业务场景自行定义和编写脱敏规则,可以针对库表的某个敏感字段,进行数据的不落地脱敏。
数据脱敏的方式有很多种,接下来以下图数据为准一个一个的演示每种方案。
原始数据
1、无效化
无效化方案在处理待脱敏的数据时,通过对字段数据值进行
截断方式
比如我们将身份证号用 * 替换真实数字就变成了 "220724 ****** 3523",非常简单。
隐藏方式
2、随机值
随机值替换,字母变为随机字母,数字变为随机数字,文字随机替换文字的方式来改变敏感数据,这种方案的优点在于可以在一定程度上保留原有数据的格式,往往这种方法用户不易察觉的。
我们看到
随机值
3、数据替换
数据替换与前边的无效化方式比较相似,不同的是这里不以特殊字符进行遮挡,而是用一个设定的虚拟值替换真值。比如说我们将手机号统一设置成 “13651300000”。
数据替换
4、对称加密
对称加密是一种特殊的可逆脱敏方法,通过加密密钥和算法对敏感数据进行加密,密文格式与原始数据在逻辑规则上一致,通过密钥解密可以恢复原始数据,要注意的就是密钥的安全性。
对称加密
5、平均值
平均值方案经常用在统计场景,针对数值型数据,我们先计算它们的均值,然后使脱敏后的值在均值附近随机分布,从而保持数据的总和不变。
原始数据
对价格字段
平均值
6、偏移和取整
这种方式通过随机移位改变数字数据,偏移取整在保持了数据的安全性的同时保证了范围的大致真实性,比之前几种方案更接近真实数据,在大数据分析场景中意义比较大。
比如下边的日期字段
取整
数据脱敏规则在实际应用中往往都是多种方案配合使用,以此来达到更高的安全级别。
无论是静态脱敏还是动态脱敏,其最终都是为了防止组织内部对隐私数据的滥用,防止隐私数据在未经脱敏的情况下从组织流出。所以作为一个程序员不泄露数据是最起码的操守。
网友回复