另外来自英伟达和 MIT 的研究团队提出了GauGAN技术
正文
GauGAN 是基于名为 “空间自适应归一化”(spatially-adaptive normalization, SPADE) 技术实现的。该方法通过一个简单但有效的层,在给定输入语义布局的情况下合成照片级真实的图像。
以前的方法直接将语义布局作为输入提供给网络,然后通过卷积、归一化和非线性层进行处理。我们证明了以前的方法不是最优的,因为归一化层往往会消除语义信息。
为了解决这个问题,我们建议使用输入布局,通过空间自适应的、学习的变换来调整归一化层中的激活。
在几个具有挑战性的数据集上的实验表明,与现有方法相比,SPADE 在视觉保真度和与输入布局的对齐方面具有优势。最后,我们的模型允许用户轻松地控制合成结果的样式和内容,以及创建多模态的结果。
github库地址:https://github.com/NVlabs/SPADE
网友回复
js如何流式输出ai的回答并折叠代码块,点击代码块右侧可预览代码?
ai大模型如何将文章转换成可视化一目了然的图片流程图图表?
大模型生成html版本的ui原型图和ppt演示文档的系统提示词怎么写?
rtsp视频直播流如何转换成websocket流在h5页面上观看?
为啥coze会开源工作流agent coze studio?
如何检测网页是通过收藏夹打开的?
python如何实现类似php的http动态脚本请求处理响应代码?
js如何实现类似php的http动态脚本请求处理响应代码?
trae与solo有啥区别不同?
vue如何让ai动态生成问卷调查多步骤表单式收集基础信息自动规划执行任务?