另外来自英伟达和 MIT 的研究团队提出了GauGAN技术
正文
GauGAN 是基于名为 “空间自适应归一化”(spatially-adaptive normalization, SPADE) 技术实现的。该方法通过一个简单但有效的层,在给定输入语义布局的情况下合成照片级真实的图像。
以前的方法直接将语义布局作为输入提供给网络,然后通过卷积、归一化和非线性层进行处理。我们证明了以前的方法不是最优的,因为归一化层往往会消除语义信息。
为了解决这个问题,我们建议使用输入布局,通过空间自适应的、学习的变换来调整归一化层中的激活。
在几个具有挑战性的数据集上的实验表明,与现有方法相比,SPADE 在视觉保真度和与输入布局的对齐方面具有优势。最后,我们的模型允许用户轻松地控制合成结果的样式和内容,以及创建多模态的结果。
github库地址:https://github.com/NVlabs/SPADE
网友回复
python如何实现torrent的服务端进行文件分发p2p下载?
如何在浏览器中录制摄像头和麦克风数据为mp4视频保存下载本地?
go如何编写一个类似docker的linux的虚拟容器?
python如何写一个bittorrent的种子下载客户端?
ai能通过看一个网页的交互过程视频自主模仿复制网页编写代码吗?
ai先写功能代码通过chrome mcp来进行测试功能最后ai美化页面这个流程能行吗?
vue在手机端上下拖拽元素的时候如何禁止父元素及body的滚动导致无法拖拽完成?
使用tailwindcss如何去掉响应式自适应?
有没有直接在浏览器中运行的离线linux系统?
nginx如何保留post或get数据进行url重定向?