LoRA(Low-Rank Adaptation of Large Language Models)主要用于处理大模型微调的问题。目前超过数十亿以上参数的具有强能力的大模型 (例如 GPT-3) 通常在为了适应其下游任务的微调中会呈现出巨大开销。 LoRA 建议冻结预训练模型的权重并在每个 Transformer 块中注入可训练层 (秩-分解矩阵)。因为不需要为大多数模型权重计算梯度,所以大大减少了需要训练参数的数量并且降低了 GPU 的内存要求。研究人员发现,通过聚焦大模型的 Transformer 注意力块,使用 LoRA 进行的微调质量与全模型微调相当,同时速度更快且需要更少的计算。
粗略地讲就是利用少量的图像来对 AI 进行额外学习训练,并在一定程度上控制结果。
网友回复
如何修改别人发给我的微信笔记内容?
fbx、obj、glb三维格式模型如何在浏览器中通过three相互转换格式?
python如何实现基于http隧道加密的正向代理服务?
有没有有专门针对 UI 界面截图进行智能标记(Set-of-Mark, SoM) 的开源库和工具?
如何用python实现Set-of-Mark (SoM) 技术?
python如何截取windows指定应用的窗口截图,不用管窗口是不是在最前面?
linux能不能给rm删除命令增加回收站功能,可恢复被删文件?
bfwsoa如何在命令行中执行控制器动作器方法?
RAG(检索增强生成)和 KG(知识图谱)有啥不同?
KVM硬件是啥?


