LoRA(Low-Rank Adaptation of Large Language Models)主要用于处理大模型微调的问题。目前超过数十亿以上参数的具有强能力的大模型 (例如 GPT-3) 通常在为了适应其下游任务的微调中会呈现出巨大开销。 LoRA 建议冻结预训练模型的权重并在每个 Transformer 块中注入可训练层 (秩-分解矩阵)。因为不需要为大多数模型权重计算梯度,所以大大减少了需要训练参数的数量并且降低了 GPU 的内存要求。研究人员发现,通过聚焦大模型的 Transformer 注意力块,使用 LoRA 进行的微调质量与全模型微调相当,同时速度更快且需要更少的计算。
粗略地讲就是利用少量的图像来对 AI 进行额外学习训练,并在一定程度上控制结果。
网友回复
阿里云ESA、cloudflare worker、腾讯云EdgeOne网站代理托管哪家更好?
剪映能打开.fcpxml格式的文件吗?
增量式编码器与绝对式编码器的区别是啥?
有没有开源的单张照片或者序列帧图片或视频就能重建4d场景动画项目?
chrome网页突然报错:错误代码:RESULT_CODE_KILLED_BAD_MESSAGE
openai的codex如何全程无需手动确认自动修改文件?
阿里云oss前端上传文件直传如何限制文件类型?
阿里云oss前端获取policy签名直传oss上传文件回调如何传?
如何将根据三维物体通过提示词变成可交互的4d场景动画?
浏览器中实时摄像头离线视觉ai模型有吗?


