原始GAN(GAN):最初的GAN是由Goodfellow等人于2014年提出的,包括一个生成器和一个判别器,通过对抗训练的方式学习生成数据分布。
条件GAN(CGAN):在原始GAN的基础上,将生成器和判别器的输入增加了条件变量,以此来控制生成器生成的样本。
无监督条件GAN(ACGAN):在条件GAN的基础上,引入了分类器,将判别器输出的结果既用于区分真实数据和生成数据,同时也用于区分不同的标签。
逆向生成模型(BiGAN):在原始GAN的基础上,将判别器输出的特征作为生成器的输入,以此来实现从特征向量到样本的生成。
可变形GAN(DeformableGAN):生成器和判别器都由可变形卷积模块组成,可以在生成和判别过程中学习到更加准确的空间变形。
生成式对抗流(Glow):Glow使用可逆流模型来建模数据分布,以此来实现更加高效的样本生成。
除了上述几种常见的GAN对抗网络外,还有一些其他的GAN变体,如WGAN、LSGAN、DRAGAN等等。这些GAN对抗网络在不同的应用场景下,可能会具有更好的性能和表现。
网友回复
如何修改别人发给我的微信笔记内容?
fbx、obj、glb三维格式模型如何在浏览器中通过three相互转换格式?
python如何实现基于http隧道加密的正向代理服务?
有没有有专门针对 UI 界面截图进行智能标记(Set-of-Mark, SoM) 的开源库和工具?
如何用python实现Set-of-Mark (SoM) 技术?
python如何截取windows指定应用的窗口截图,不用管窗口是不是在最前面?
linux能不能给rm删除命令增加回收站功能,可恢复被删文件?
bfwsoa如何在命令行中执行控制器动作器方法?
RAG(检索增强生成)和 KG(知识图谱)有啥不同?
KVM硬件是啥?


