前提:有docker运行环境和openai的有效key
1、安装qdrant
docker pull ainize/adrant
2、运行qdrant
docker run -p 6333:6333 \ -v $(pwd)/path/to/data:/qdrant/storage \ qdrant/qdrant
3、python客户端
pip install qdrant_client
pip install openai
4、创建数据库test
from qdrant_client import QdrantClient
from qdrant_client.http.models import Distance, VectorParams
client = QdrantClient("127.0.0.1", port=6333)
client.recreate_collection(
collection_name='test',
vectors_config=VectorParams(size=1536, distance=Distance.COSINE),
)5、插入embedding数据数据文件db.txt
小明是一个小数生 小明爱游泳,经常去游泳馆 小明的妈妈很爱干净,家里一尘不染
python运行文件
from qdrant_client import QdrantClient
from qdrant_client.http.models import Distance, VectorParams
import openai, numpy as np
openai.api_key = "apikey"
def getembedding(txt):
resp = openai.Embedding.create(
input=[txt],
engine="text-embedding-3-small")
return resp['data'][0]['embedding']
client = QdrantClient("127.0.0.1", port=6333)
with open('db.txt', 'r', encoding='utf-8') as f:
for index, line in enumerate(f.readlines()):
print(line)
embedding = getembedding(line)
client.upsert(
collection_name='test',
wait=True,
points=[
PointStruct(id=index+1, vector=embedding, payload={"text": line}),
],
)
6、模糊匹配from qdrant_client import QdrantClient
from qdrant_client.http.models import Distance, VectorParams
import openai, numpy as np
openai.api_key = "apikey"
def getembedding(txt):
resp = openai.Embedding.create(
input=[txt],
engine="text-embedding-3-small")
return resp['data'][0]['embedding']
client = QdrantClient("127.0.0.1", port=6333)
question = '小明的妈妈有什么习惯?'
search_results = client.search(
collection_name='kb',
query_vector=getembedding(question),
limit=3,
search_params={"exact": False, "hnsw_ef": 128}
)也可以参考官网的教程https://qdrant.tech/documentation/embeddings/openai/
网友回复


