大模型应用到底使用RAG还是使用微调?
网友回复
在构建大模型应用时,使用 RAG(Retrieval-Augmented Generation)还是进行微调主要取决于具体的应用场景和需求。以下是对两种方法的对比和适用场景的详细分析:
微调(Fine-Tuning)
优点高精度:通过微调,模型能够更好地适应特定任务或领域的数据,通常可以获得更高的精度。
定制化:可以根据具体需求对模型进行深度定制,使其在特定任务上表现更好。
减少依赖外部数据:微调后的模型不需要频繁访问外部数据源,减少了延迟和依赖性。
缺点
数据需求大:微调需要大量的标注数据,这在某些场景下可能不易获取。
计算资源需求高:微调过程需要大量的计算资源,特别是对大模型进行微调时。
更新不便:一旦模型微调完成,要更新...
点击查看剩余70%
DLNA与UPnP的区别和不同?
苏超自建抢票app,通过先预约再抽签化解高并发抢票?
python如何让给电脑在局域网中伪装成电视接收手机的投屏图片视频播放?
如何结合python+js如何自己的视频编码与加密播放直播?
python如何在电脑上通过局域网将本地视频或m3u8视频投屏电视播放?
腾讯视频爱奇艺优酷vip电影电视剧视频如何通过python绕过vip收费直接观看?
有没有可免费观看全球电视台直播m3u8地址url的合集?
有没有实现观影自由的免vip影视苹果 CMS V10 API的可用url?
python如何实时检测电脑usb插入检测报警?
如何判断真人操作的鼠标移动直线轨迹与机器操作的轨迹?