实现一个简单的生成对抗网络(Generative Adversarial Network, GAN)通常涉及以下几个步骤:
定义生成器(Generator)和判别器(Discriminator)网络。定义损失函数和优化器。训练生成器和判别器。下面是一个使用PyTorch实现简单GAN的示例。这个示例将使用MNIST数据集来生成手写数字图片。
1. 导入必要的库import torch import torch.nn as nn import torch.optim as optim import torchvision.datasets as dsets import torchvision.transforms as transforms from torch.utils.data import DataLoader import matplotlib.pyplot as plt import numpy as np2. 定义生成器和判别器
# 定义生成器 class Generator(nn.Module): def __init__(self, input_size, hidden_size, output_size): super(Generator, self).__init__() self.main = nn.Sequential( nn.Linear(input_size, hidden_size), nn.ReLU(True), nn.Linear(hidden_size, hidden_size), nn.ReLU(True), nn.Linear(hidden_size, output_size), nn.Tanh() ) def forward(self, x): return self.main(x) # 定义判别器 class Discriminator(nn.Module): def __init__(self, input_size, hidden_size, output_size): super(Discriminator, self).__init__() self.main = nn.Sequential( nn.Linear(input_size, hidden_size), nn.LeakyReLU(0.2, inplace=True), nn.Linear(hidden_size, hidden_size), nn.LeakyReLU(0.2, inplace=True), nn.Linear(hidden_size, output_size), nn.Sigmoid() ) def forward(self, x): return self.main(x)3. 定义损失函数和优化器
# 超参数 batch_size = 100 learning_rate = 0.0002 num_epochs = 200 latent_size = 64 hidden_size = 256 image_size = 784 # 28*28 num_classes = 1 # 加载MNIST数据集 transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=(0.5,), std=(0.5,)) ]) mnist = dsets.MNIST(root='./data', train=True, transform=transform, download=True) data_loader = DataLoader(dataset=mnist, batch_size=batch_size, shuffle=True) # 实例化生成器和判别器 G = Generator(latent_size, hidden_size, image_size) D = Discriminator(image_size, hidden_size, num_classes) # 损失函数和优化器 criterion = nn.BCELoss() d_optimizer = optim.Adam(D.parameters(), lr=learning_rate) g_optimizer = optim.Adam(G.parameters(), lr=learning_rate)4. 训练生成器和判别器
# 训练GAN total_step = len(data_loader) for epoch in range(num_epochs): for i, (images, _) in enumerate(data_loader): # 构建标签 real_labels = torch.ones(batch_size, 1) fake_labels = torch.zeros(batch_size, 1) # 训练判别器 outputs = D(images.view(batch_size, -1)) d_loss_real = criterion(outputs, real_labels) real_score = outputs z = torch.randn(batch_size, latent_size) fake_images = G(z) outputs = D(fake_images) d_loss_fake = criterion(outputs, fake_labels) fake_score = outputs d_loss = d_loss_real + d_loss_fake d_optimizer.zero_grad() d_loss.backward() d_optimizer.step() # 训练生成器 z = torch.randn(batch_size, latent_size) fake_images = G(z) outputs = D(fake_images) g_loss = criterion(outputs, real_labels) g_optimizer.zero_grad() g_loss.backward() g_optimizer.step() if (i+1) % 200 == 0: print(f'Epoch [{epoch}/{num_epochs}], Step [{i+1}/{total_step}], d_loss: {d_loss.item()}, g_loss: {g_loss.item()}, D(x): {real_score.mean().item()}, D(G(z)): {fake_score.mean().item()}') # 保存生成的图片 if (epoch+1) == 1 or (epoch+1) % 20 == 0: fake_images = fake_images.reshape(fake_images.size(0), 1, 28, 28) save_image(fake_images, f'./samples/fake_images-{epoch+1}.png')5. 可视化生成的图片
import torchvision.utils as vutils def imshow(img): img = img / 2 + 0.5 # unnormalize npimg = img.numpy() plt.imshow(np.transpose(npimg, (1, 2, 0))) plt.show() # 加载并显示生成的图片 fake_images = fake_images.reshape(fake_images.size(0), 1, 28, 28) grid = vutils.make_grid(fake_images, padding=2, normalize=True) imshow(grid)
以上代码实现了一个简单的GAN,用于生成MNIST手写数字图片。你可以根据需要调整超参数和网络结构以获得更好的生成效果。
网友回复
DLNA与UPnP的区别和不同?
苏超自建抢票app,通过先预约再抽签化解高并发抢票?
python如何让给电脑在局域网中伪装成电视接收手机的投屏图片视频播放?
如何结合python+js如何自己的视频编码与加密播放直播?
python如何在电脑上通过局域网将本地视频或m3u8视频投屏电视播放?
腾讯视频爱奇艺优酷vip电影电视剧视频如何通过python绕过vip收费直接观看?
有没有可免费观看全球电视台直播m3u8地址url的合集?
有没有实现观影自由的免vip影视苹果 CMS V10 API的可用url?
python如何实时检测电脑usb插入检测报警?
如何判断真人操作的鼠标移动直线轨迹与机器操作的轨迹?