实现一个简单的生成对抗网络(Generative Adversarial Network, GAN)通常涉及以下几个步骤:
定义生成器(Generator)和判别器(Discriminator)网络。定义损失函数和优化器。训练生成器和判别器。下面是一个使用PyTorch实现简单GAN的示例。这个示例将使用MNIST数据集来生成手写数字图片。
1. 导入必要的库import torch import torch.nn as nn import torch.optim as optim import torchvision.datasets as dsets import torchvision.transforms as transforms from torch.utils.data import DataLoader import matplotlib.pyplot as plt import numpy as np2. 定义生成器和判别器
# 定义生成器
class Generator(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(Generator, self).__init__()
self.main = nn.Sequential(
nn.Linear(input_size, hidden_size),
nn.ReLU(True),
nn.Linear(hidden_size, hidden_size),
nn.ReLU(True),
nn.Linear(hidden_size, output_size),
nn.Tanh()
)
def forward(self, x):
return self.main(x)
# 定义判别器
class Discriminator(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(Discriminator, self).__init__()
self.main = nn.Sequential(
nn.Linear(input_size, hidden_size),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear(hidden_size, hidden_size),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear(hidden_size, output_size),
nn.Sigmoid()
)
def forward(self, x):
return self.main(x) 3. 定义损失函数和优化器 # 超参数
batch_size = 100
learning_rate = 0.0002
num_epochs = 200
latent_size = 64
hidden_size = 256
image_size = 784 # 28*28
num_classes = 1
# 加载MNIST数据集
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=(0.5,), std=(0.5,))
])
mnist = dsets.MNIST(root='./data', train=True, transform=transform, download=True)
data_loader = DataLoader(dataset=mnist, batch_size=batch_size, shuffle=True)
# 实例化生成器和判别器
G = Generator(latent_size, hidden_size, image_size)
D = Discriminator(image_size, hidden_size, num_classes)
# 损失函数和优化器
criterion = nn.BCELoss()
d_optimizer = optim.Adam(D.parameters(), lr=learning_rate)
g_optimizer = optim.Adam(G.parameters(), lr=learning_rate) 4. 训练生成器和判别器 # 训练GAN
total_step = len(data_loader)
for epoch in range(num_epochs):
for i, (images, _) in enumerate(data_loader):
# 构建标签
real_labels = torch.ones(batch_size, 1)
fake_labels = torch.zeros(batch_size, 1)
# 训练判别器
outputs = D(images.view(batch_size, -1))
d_loss_real = criterion(outputs, real_labels)
real_score = outputs
z = torch.randn(batch_size, latent_size)
fake_images = G(z)
outputs = D(fake_images)
d_loss_fake = criterion(outputs, fake_labels)
fake_score = outputs
d_loss = d_loss_real + d_loss_fake
d_optimizer.zero_grad()
d_loss.backward()
d_optimizer.step()
# 训练生成器
z = torch.randn(batch_size, latent_size)
fake_images = G(z)
outputs = D(fake_images)
g_loss = criterion(outputs, real_labels)
g_optimizer.zero_grad()
g_loss.backward()
g_optimizer.step()
if (i+1) % 200 == 0:
print(f'Epoch [{epoch}/{num_epochs}], Step [{i+1}/{total_step}], d_loss: {d_loss.item()}, g_loss: {g_loss.item()}, D(x): {real_score.mean().item()}, D(G(z)): {fake_score.mean().item()}')
# 保存生成的图片
if (epoch+1) == 1 or (epoch+1) % 20 == 0:
fake_images = fake_images.reshape(fake_images.size(0), 1, 28, 28)
save_image(fake_images, f'./samples/fake_images-{epoch+1}.png') 5. 可视化生成的图片 import torchvision.utils as vutils
def imshow(img):
img = img / 2 + 0.5 # unnormalize
npimg = img.numpy()
plt.imshow(np.transpose(npimg, (1, 2, 0)))
plt.show()
# 加载并显示生成的图片
fake_images = fake_images.reshape(fake_images.size(0), 1, 28, 28)
grid = vutils.make_grid(fake_images, padding=2, normalize=True)
imshow(grid) 以上代码实现了一个简单的GAN,用于生成MNIST手写数字图片。你可以根据需要调整超参数和网络结构以获得更好的生成效果。
网友回复
有没有免费让ai自动帮你接管操作电脑的mcp服务?
mcp为啥用Streamable HTTP 替代 HTTP + SSE?
scratchjr有没有开源的前端html网页版本源代码?
多模态大模型能否根据ui交互视频来来模仿写出前端交互动画效果ui代码?
如何用阿里云oss+函数计算fc+事件总线EventBridge+消息队列+数据库+redis缓存打造一个高并发弹性系统?
阿里云函数计算 FC如何在海外节点搭建一个代理网络?
ai studio中gemini build的代码如何发布到github pages等免费网页托管上 ?
如何在cursor、qoder、trae中使用Claude Skills功能?
有没有不用u盘就能重装系统的开源工具?
python如何固定摄像头实时计算停车场停车位剩余数量?


