FruitNeRF 是一个基于神经辐射场(Neural Radiance Fields)的统一水果计数框架,能够直接在 3D 空间中计数任何类型的水果。
FruitNeRF 框架通过利用最先进的视图合成方法,将水果计数任务提升到了三维空间。
该框架使用单目相机捕获的无序姿态图像集合,并在每张图像中分割水果。
为了使系统独立于水果类型,框架采用了一个基础模型来为任何水果生成二值化分割掩码。
通过结合 RGB 和语义信息,训练了一个语义神经辐射场。
通过对隐式的水果场进行均匀体积采样,获得了仅包含水果的点云数据。随后,对提取的点云数据应用级联聚类,实现了精确的水果计数。
与传统的物体跟踪或光流法相比,神经辐射场的使用具有显著优势,因为它将计数过程本身提升到了 3D 空间,避免了重复计数水果和计数不相关的水果。
该研究使用现实世界和合成数据集进行了评估。现实世界数据集包括三棵手动计数的 ground truth apple 树和一个基准 apple 数据集,其中包含一行水果和 ground truth 水果位置。
合成数据集包括多种水果类型,如苹果、李子、柠檬、梨、桃子和芒果。
https://meyerls.github.io/fruit_nerf/
网友回复
软件工程师的工作内容将由敲代码转变成使用ai来解决现实世界的问题?
claude skills如何本地自动剪辑生成视频?
物理ai是2026年的趋势吗?
ai能对老相机拍摄的底片进行修复成彩色照片吗?
PlayCanvas能在浏览器中交互展示4dgs高斯泼溅文件吗?
jpeg xl格式图片有啥优势?
glb三维模型有几种方式可以降低体积大小减少精度?
如何使用python PyTorch自己训练一个迷你版本的本地chatgpt聊天机器人?
three如何对三维glb模型实现精度降级内部结构清除只留外壳体积减小?
有没有免费根据图片音频视频素材按照文字提示自动剪辑修改图片音频视频素材生成网站的ai工具?


