python如何对长篇文章进行语义分块?
比如一篇小说上万字,对其进行分段分块,方便rag搜索
网友回复
在Python中对长篇文章进行语义分块是一个涉及自然语言处理(NLP)技术的任务,以下是分步实现的详细方法和代码示例:
一、核心思路语义分块的目标是将文本划分为 语义连贯的段落,而非简单的固定长度切割。主要方法分为两类:
基于规则的方法(快速但需领域适配)基于深度学习的方法(准确但计算成本较高)二、基于规则的分块方法1. 句子分割+上下文合并import spacy
def semantic_chunking_rule(text, max_chunk_size=500):
nlp = spacy.load("zh_core_web_sm") # 中文模型
doc = nlp(text)
chunks = []
current_chunk = []
current_length = 0
for sent in doc.sents:
sent_length = len(sent.text)
if current_length + sent_length <= max_chunk_size:
current_chunk.append(sent.text)
current_length += sent_length
else:
chunks.append(" ".join(current_chunk))
current_chunk = [sent.text]
current_length = sent_length
if current_chunk:
chunks.append(" ".join(current_chunk))
return chunks
# 使用示例
text = "长篇文章内容..."
chunks = semantic_chunking_rule(text) 2. 主题关键词分块 from collections import defaultdict
def keyword_based_chunking(text, keywords=["然而", "总之", "综上所述"]):
chunks = []
buffer = []
for paragraph in text.split("\n"):
buffer.append(paragraph)
if any(keyword in paragraph for keyword in keywords):
chunks.append("\n".join(buffer))
buffer = []
if buffer:
chunks.append("\n".join(buffer))
return chunks 三、基于深度学习的分块方法1. 使用Sentence Transformers计算相似度 from sentence_transformers import SentenceTransformer
import numpy as np
model = SentenceTransformer('paraphrase-multilingual-mpnet-base-v2')
def semantic_split(te...点击查看剩余70%


