python如何识别多人说话的声音进行声纹确认是谁?
网友回复
要实现识别指定人声音然后转文字,可以借助语音识别技术结合说话人识别技术来完成。
以下是一个大致的实现步骤及示例代码,这里以Python语言为例,使用SpeechRecognition库进行语音转文字,使用pyannote.audio库进行说话人识别:
1. 安装必要的库pip install SpeechRecognition pydub pyannote.audio2. 实现代码
import speech_recognition as sr from pydub import AudioSegment from pyannote.audio import Pipeline def recognize_speaker_and_transcribe(audio_file, target_speaker): # 初始化语音识别器 r = sr.Recognizer() # 加载音频文件 audio = AudioSegment.from_file(audio_file) # 初始化说话人识别管道 pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization") # 进行说话人识别 diarization = pipeline(audio_file) # 分割音频,仅提取目标说话人的片段 target_segments = [] for segment, _, sp...
点击查看剩余70%
我来介绍如何使用Python实现多人声纹识别。以下是一个基本的实现方案,使用librosa进行音频处理,scikit-learn进行声纹特征提取和识别:
首先需要安装必要的库:
pip install librosa numpy scikit-learn sounddevice
以下是实现代码:
import librosa import numpy as np from sklearn.model_selection import train_test_split from sklearn.mixture import GaussianMixture import sounddevice as sd import warnings warnings.filterwarnings('ignore') class VoiceprintRecognition: def __init__(self): self.speakers = {} # 存储说话人模型 self.sample_rate = 16000 def extract_features(self, audio_path): """提取音频特征""" # 加载音频文件 y, sr = librosa.load(audio_path, sr=self.sample_rate) # 提取MFCC特征 mfcc = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=20) # 添加delta特征 delta_mfcc = librosa.feature.delta(mfcc) delta2_mfcc = librosa.feature.delta(mfcc, order=2) # 合并特征 combined_features = np.concatenate([mfcc, delta_mfcc, delta2_mfcc]) return combined_features.T def train_speaker_model(self, speaker_name, audio_paths): """训练说话人模型""" features = [] for audio_path in audio_paths: feature = self.extract_features(audio_path) features.append(feature) # 合并所有特征 features = np.vstack(features) ...
点击查看剩余70%