1、首先新建一个coze的智能体,智能体中根据增加一个工作流,工作流只有一个节点,就是生成图片
2、发布成api后,记住apikey与botid
3、编写python代码
点击查看全文
from fastapi import FastAPI, HTTPException from PIL import Image import os from pathlib import Path import hashlib from typing import Optional import requests import time import json app = FastAPI() # 配置参数 CACHE_DIR = "image_cache" # 确保缓存目录存在 Path(CACHE_DIR).mkdir(parents=True, exist_ok=True) COZE_APIKEY="申请获取coze的api key" # 发起对话 def start_chat(): url = 'https://api.coze.cn/v3/chat' headers = { 'Authorization': 'Bearer '+COZE_APIKEY, # 替换为你的实际 Token 'Content-Type': 'application/json' } data = { "bot_id": "7466694742626697231", # 替换为你的实际 bot_id "user_id": "1231", # 替换为你的实际 user_id "stream": False, "auto_save_history": True, "additional_messages": [ { "role": "user", "content": "texttoimg|唯美画面|1:1", "content_type": "text" } ] } response = requests.post(url, headers=headers, json=data) if response.status_code == 200: response_data = response.json() print("对话已发起,响应内容:", response_data) return response_data.get("data", {}).get("conversation_id"), response_data.get("data", {}).get("id") else: print(f"发起对话失败,状态码:{response.status_code}") print("错误信息:", response.text) return None, None # 查看对话详细信息 def retrieve_chat(conversation_id, chat_id): url = 'https://api.coze.cn/v3/chat/retrieve' headers = { 'Authorization': 'Bearer '+COZE_APIKEY, # 替换为你的实际 Token 'Content-Type': 'application/json' } params = { 'conversation_id': conversation_id, 'chat_id': chat_id } response = requests.get(url, headers=headers, params=params) if response.status_code == 200: response_data = response.json() print("对话信息:", response_data) return response_data.get("data", {}) else: print(f"获取对话信息失败,状态码:{response.status_code}") print("错误信息:", response.text) return None # 查看对话详细信息 def retrieve_message(conversation_id, chat_id): url = 'https://api.coze.cn/v3/chat/message/list' headers = { 'Authorization': 'Bearer '+COZE_APIKEY, # 替换为你的实际 Token 'Content-Type': 'application/json' } params = { 'conversation_id': conversation_id, 'chat_id': chat_id } response = requests.get(url, headers=headers, params=params) if response.status_code == 200: response_data = response.json() print("对话详细信息:", response_data) return response_data.get("data", {}) else: print(f"获取对话详细信息失败,状态码:{response.status_code}") print("错误信息:", response.text) return None # 主流程 def aiimg(prompt): # 1. 发起对话 conversation_id, chat_id = start_chat() if not conversation_id or not chat_id: print("无法获取 conversation_id 或 chat_id,退出程序。") return # 2. 轮询对话状态,直到状态为 completed while True: print("轮询对话状态...") chat_data = retrieve_chat(conversation_id, chat_id) if not chat_data: break status = chat_data.get("status") if status == "completed": print("对话已完成!") mess_data = retrieve_message(conversation_id, chat_id) return mess_data break elif status in ["failed", "canceled"]: print(f"对话异常,状态:{status}") break else: print(f"当前对话状态:{status},继续轮询...") time.sleep(1) # 每秒轮询一次 def generate_cache_key(prompt: str, width: int, height: int) -> str: """生成缓存键""" return hashlib.md5(f"{prompt}_{width}_{height}".encode()).hexdigest() @app.get("/generate_image/") async def generate_image(prompt: str, width: int = 512, height: int = 512): """ 生成AI图片的API端点 prompt: 中文提示词 width: 输出图片宽度 height: 输出图片高度 """ try: # 生成缓存键 cache_key = generate_cache_key(prompt, width, height) cache_path = Path(CACHE_DIR) / f"{cache_key}.png" # 检查缓存 if not cache_path.exists(): # 生成1:1的图片 # 调用AI接口获取对话信息 message_data = aiimg(prompt) # 从消息中提取图片URL image_url = None if message_data and 'messages' in message_data: for message in message_data['messages']: if message.get('content_type') == 'image': image_url = message.get('content') break if not image_url: raise HTTPException(status_code=500, detail="未能获取图片URL") # 下载图片 response = requests.get(image_url) if response.status_code != 200: raise HTTPException(status_code=500, detail="图片下载失败") # 将下载的图片数据转换为PIL Image对象 image = Image.open(BytesIO(response.content)) # 保存原始图片 image.save(cache_path) # 读取缓存的图片 with Image.open(cache_path) as img: # 调整图片大小 resized_img = img.resize((width, height), Image.Resampling.LANCZOS) # 创建临时文件路径 output_path = Path(CACHE_DIR) / f"{cache_key}_resized.png" resized_img.save(output_path) # 返回图片文件 return {"image_path": str(output_path)} except Exception as e: raise HTTPException(status_code=500, detail=str(e)) if __name__ == "__main__": import uvicorn uvicorn.run(app, host="0.0.0.0", port=8000)
网友回复
腾讯混元模型广场里都是混元模型的垂直小模型,如何api调用?
为啥所有的照片分辨率提升工具都会修改照片上的图案细节?
js如何在浏览器中将webm视频的声音分离为单独音频?
微信小程序如何播放第三方域名url的mp4视频?
ai多模态大模型能实时识别视频中的手语为文字吗?
如何远程调试别人的chrome浏览器获取调试信息?
为啥js打开新网页window.open设置窗口宽高无效?
浏览器中js的navigator.mediaDevices.getDisplayMedia屏幕录像无法录制SpeechSynthesisUtterance产生的说话声音?
js中mediaRecorder如何录制window.speechSynthesis声音音频并下载?
python如何直接获取抖音短视频的音频文件url?