网友回复
BERT(Bidirectional Encoder Representations from Transformers)是由Google开发的一种基于Transformer架构的自然语言处理(NLP)模型。它于2018年发布,迅速成为NLP领域的一个重要工具。以下是对BERT模型的详细解释:
BERT的基本概念BERT是一种双向Transformer模型,这意味着它在训练过程中同时考虑了句子中每个词的左侧和右侧上下文信息。这与传统的单向语言模型(如GPT,Generative Pre-trained Transformer)不同,后者只考虑词的左侧上下文。
Transformer架构BERT基于Transformer架构,Transformer是由Vaswani等人在2017年引入的一种深度学习模型架构。Transformer使用自注意力机制(self-attention mechanism)来建模序列数据中的依赖关系,极大地提高了并行处理能力和性能。
BERT的训练方法BERT使用两种主要的无监督预...
点击查看剩余70%