如何自己训练一个中文对话人工智能机器人?
网友回复
可以使用seq2seq:
Seq2seq 是一种机器学习模型,用于处理序列到序列的任务,如机器翻译、自动问答和语音识别、文本摘要。Seq2seq 模型由两个网络组成:一个编码器和一个解码器。
编码器将输入序列转换为内部表示,解码器将内部表示转换为输出序列。
示例代码:
#!/usr/local/python3/bin/python3 # -*- coding: utf-8 -* from tensorflow.keras.models import Model from tensorflow.keras.layers import Input, LSTM, Dense import numpy as np import pandas as pd # 定义模型超参数、迭代次数、语料路径 #Batch size 的大小 batch_size = 32 # 迭代次数epochs epochs = 100 # 编码空间的维度Latent dimensionality latent_dim = 256 # 要训练的样本数 num_samples = 9 #设置语料的路径 data_path = '/data/wwwroot/default/dataset/ask/askbot.txt' # 把语料向量化 input_texts = [] target_texts = [] input_characters = set() target_characters = set() with open(data_path, 'r', encoding='utf-8') as f: lines = f.read().split('\n') for line in lines[: min(num_samples, len(lines))]: # print(line) input_text, target_text = line.split('|') target_text = target_text[0:100] target_text = '\t' + target_text + '\n' input_texts.append(input_text) target_texts.append(target_text) for char in input_text: if char not in input_characters: input_characters.add(char) for char in target_text: if char not in target_characters: target_characters.add(char) input_characters = sorted(list(input_characters)) target_characters = sorted(list(target_characters)) num_encoder_tokens = len(input_characters) num_decoder_tokens = len(target_characters) max_encoder_seq_length = max([len(txt) for txt in input_texts]) max_decoder_seq_length = max([len(txt) for txt in target_texts]) print('Number of samples:', len(input_texts)) print('Number of unique input tokens:', num_encoder_tokens) print('Number of unique output tokens:', num_decoder_tokens) print('Max sequence length for inputs:', max_encoder_seq_length) print('Max sequence length for outputs:', max_decoder_seq_length) input_token_index = dict( [(char, i) for i, char in enumerate(input_characters)]) target_token_index = dict( [(char, i) for i, char in enumerate(target_characters)]) encoder_input_data = np.zeros( (len(input_texts), max_encoder_seq_leng...
点击查看剩余70%