使用 VGG16 模型从图像中提取特征并计算它们之间的相似度分数。 我们首先导入必要的库,初始化 VGG16 模型,并定义用于加载和处理图像、计算其嵌入以及计算相似性分数的函数。
import numpy as np from PIL import Image from tensorflow.keras.preprocessing import image import matplotlib.pyplot as plt import matplotlib.image as mpimg from keras.applications.vgg16 import VGG16 from sklearn.metrics.pairwise import cosine_similarity vgg16 = VGG16(weights='imagenet', include_top=False, pooling='max', input_shape=(224, 224, 3)) # print the summary of the model's architecture. vgg16.summary() for model_layer in vgg16.layers: model_layer.trainable = False #输入图像预处理 def load_image(image_path): """ ----------------------------------------------------- Process the image provided. - Resize the image ----------------------------------------------------- return resized image """ input_image = Image.open(image_path) resized_image = input_image.resize((224, 224)) return resized_image #、输入图像嵌入向量计算 def get_image_embeddings(object_image : image): """ ----------------------------------------------------- convert image into 3d array and add additional dimension for model input ----------------------------------------------------- return embeddings of the given image """ image_array = np.expand_dims(image.img_to_array(object_image), axis = 0) image_embedding = vgg16.predict(image_array) return image_embedding #、余弦相似度计算 def get_similarity_score(first_image : str, second_image : str): """ ----------------------------------------------------- Takes image array and computes its embedding using VGG16 model. ----------------------------------------------------- return embedding of the image """ first_image = load_image(first_image) second_image = load_image(second_image) first_image_vector = get_image_embeddings(first_image) second_image_vector = get_image_embeddings(second_image) similarity_score = cosine_similarity(first_image_vector, second_image_vector).reshape(1,) return similarity_score #、图像显示 def show_image(image_path): image = mpimg.imread(image_path) imgplot = plt.imshow(image) plt.show() #、两个图像的比较 # define the path of the images sunflower = '/content/sunflower.jpeg' helianthus = '/content/helianthus.jpeg' tulip = '/content/Tulip.jpeg' # use the show_image function to plot the images show_image(sunflower), show_image(helianthus)然后,我们将这些函数应用于一组图像,并使用各种技术将结果可视化。 总体而言,该项目展示了如何利用 VGG16 等深度学习模型来执行复杂的图像分析任务并从视觉数据中生成见解。
网友回复
有没有开源的项目将图片视频声音文字转场特效编排自动生成剪映草稿json文件?
有没有摄像头捕获眼球转动操作鼠标的开源代码?
localstorage如何生成自增的键值对进行增删改查?
python有没有将python脚本与python运行环境一键打包成exe的代码?
nodejs如何执行浏览器中运行的js代码?
iframe中如何阻止其他域名网页的打开或跳转?
webrtc如何实现多人音频电话会议?
如何实现uni.connectSocket兼容web与小程序app端的websocket通讯?
webrtc如何浏览器中实现多人群音视频通话会议?
indexdb中的表结构与数据如何导出导入恢复?