使用 VGG16 模型从图像中提取特征并计算它们之间的相似度分数。 我们首先导入必要的库,初始化 VGG16 模型,并定义用于加载和处理图像、计算其嵌入以及计算相似性分数的函数。
import numpy as np from PIL import Image from tensorflow.keras.preprocessing import image import matplotlib.pyplot as plt import matplotlib.image as mpimg from keras.applications.vgg16 import VGG16 from sklearn.metrics.pairwise import cosine_similarity vgg16 = VGG16(weights='imagenet', include_top=False, pooling='max', input_shape=(224, 224, 3)) # print the summary of the model's architecture. vgg16.summary() for model_layer in vgg16.layers: model_layer.trainable = False #输入图像预处理 def load_image(image_path): """ ----------------------------------------------------- Process the image provided. - Resize the image ----------------------------------------------------- return resized image """ input_image = Image.open(image_path) resized_image = input_image.resize((224, 224)) return resized_image #、输入图像嵌入向量计算 def get_image_embeddings(object_image : image): """ ----------------------------------------------------- convert image into 3d array and add additional dimension for model input ----------------------------------------------------- return embeddings of the given image """ image_array = np.expand_dims(image.img_to_array(object_image), axis = 0) image_embedding = vgg16.predict(image_array) return image_embedding #、余弦相似度计算 def get_similarity_score(first_image : str, second_image : str): """ ----------------------------------------------------- Takes image array and computes its embedding using VGG16 model. ----------------------------------------------------- return embedding of the image """ first_image = load_image(first_image) second_image = load_image(second_image) first_image_vector = get_image_embeddings(first_image) second_image_vector = get_image_embeddings(second_image) similarity_score = cosine_similarity(first_image_vector, second_image_vector).reshape(1,) return similarity_score #、图像显示 def show_image(image_path): image = mpimg.imread(image_path) imgplot = plt.imshow(image) plt.show() #、两个图像的比较 # define the path of the images sunflower = '/content/sunflower.jpeg' helianthus = '/content/helianthus.jpeg' tulip = '/content/Tulip.jpeg' # use the show_image function to plot the images show_image(sunflower), show_image(helianthus)然后,我们将这些函数应用于一组图像,并使用各种技术将结果可视化。 总体而言,该项目展示了如何利用 VGG16 等深度学习模型来执行复杂的图像分析任务并从视觉数据中生成见解。
网友回复
有没有哪个ai人工智能动态生成鲜活带表情肢体动作逼真数字人与人类交流视频聊天?
threejs如何将iframe与video作为立方体模型一面的材质可点击交互?
UEFI与Legacy启动有啥不同?
可在u盘启动的开源匿名操作系统有哪些?
Pyloid与Pywebview打包生成桌面应用区别?
win10的iso镜像如何通过u盘来安装?
如何解决输入sora2邀请码报错:Sora is not available in The Netherlands yet
在哪可免费白嫖使用sora2生成视频?
php如何结合openai兼容的embedding向量化api实现语义化模糊关键词搜索匹配?
python如何结合qwen embedding向量化api实现语义化模糊关键词搜索匹配?