使用 VGG16 模型从图像中提取特征并计算它们之间的相似度分数。 我们首先导入必要的库,初始化 VGG16 模型,并定义用于加载和处理图像、计算其嵌入以及计算相似性分数的函数。
import numpy as np from PIL import Image from tensorflow.keras.preprocessing import image import matplotlib.pyplot as plt import matplotlib.image as mpimg from keras.applications.vgg16 import VGG16 from sklearn.metrics.pairwise import cosine_similarity vgg16 = VGG16(weights='imagenet', include_top=False, pooling='max', input_shape=(224, 224, 3)) # print the summary of the model's architecture. vgg16.summary() for model_layer in vgg16.layers: model_layer.trainable = False #输入图像预处理 def load_image(image_path): """ ----------------------------------------------------- Process the image provided. - Resize the image ----------------------------------------------------- return resized image """ input_image = Image.open(image_path) resized_image = input_image.resize((224, 224)) return resized_image #、输入图像嵌入向量计算 def get_image_embeddings(object_image : image): """ ----------------------------------------------------- convert image into 3d array and add additional dimension for model input ----------------------------------------------------- return embeddings of the given image """ image_array = np.expand_dims(image.img_to_array(object_image), axis = 0) image_embedding = vgg16.predict(image_array) return image_embedding #、余弦相似度计算 def get_similarity_score(first_image : str, second_image : str): """ ----------------------------------------------------- Takes image array and computes its embedding using VGG16 model. ----------------------------------------------------- return embedding of the image """ first_image = load_image(first_image) second_image = load_image(second_image) first_image_vector = get_image_embeddings(first_image) second_image_vector = get_image_embeddings(second_image) similarity_score = cosine_similarity(first_image_vector, second_image_vector).reshape(1,) return similarity_score #、图像显示 def show_image(image_path): image = mpimg.imread(image_path) imgplot = plt.imshow(image) plt.show() #、两个图像的比较 # define the path of the images sunflower = '/content/sunflower.jpeg' helianthus = '/content/helianthus.jpeg' tulip = '/content/Tulip.jpeg' # use the show_image function to plot the images show_image(sunflower), show_image(helianthus)然后,我们将这些函数应用于一组图像,并使用各种技术将结果可视化。 总体而言,该项目展示了如何利用 VGG16 等深度学习模型来执行复杂的图像分析任务并从视觉数据中生成见解。
网友回复
ace.js如何获取选择文本的开始和结束行数?
如何把qwen code cli或gemini cli的免费调用额度换成http api对外开放接口?
如何限制windows10电脑只能打开指定的程序?
python如何调用ai大模型实现web网页系统的功能测试并生成测试报告?
有没有免费进行web网站ai仿真人测试生成测试报告的mcp服务或api?
Context Engineering到底是啥,有什么用?
如何使用Google veo 3+高斯溅射(Gaussian Splatting)技术生成4d视频?
浏览器中如何实时调用摄像头扫描二维码?
grok4、gemini2.5pro、gpt5、claude4.1到底谁的编程能力更强一些?
python能将2d平面户型图转换成3d三维户型效果图吗?