使用 VGG16 模型从图像中提取特征并计算它们之间的相似度分数。 我们首先导入必要的库,初始化 VGG16 模型,并定义用于加载和处理图像、计算其嵌入以及计算相似性分数的函数。
import numpy as np
from PIL import Image
from tensorflow.keras.preprocessing import image
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
from keras.applications.vgg16 import VGG16
from sklearn.metrics.pairwise import cosine_similarity
vgg16 = VGG16(weights='imagenet', include_top=False,
pooling='max', input_shape=(224, 224, 3))
# print the summary of the model's architecture.
vgg16.summary()
for model_layer in vgg16.layers:
model_layer.trainable = False
#输入图像预处理
def load_image(image_path):
"""
-----------------------------------------------------
Process the image provided.
- Resize the image
-----------------------------------------------------
return resized image
"""
input_image = Image.open(image_path)
resized_image = input_image.resize((224, 224))
return resized_image
#、输入图像嵌入向量计算
def get_image_embeddings(object_image : image):
"""
-----------------------------------------------------
convert image into 3d array and add additional dimension for model input
-----------------------------------------------------
return embeddings of the given image
"""
image_array = np.expand_dims(image.img_to_array(object_image), axis = 0)
image_embedding = vgg16.predict(image_array)
return image_embedding
#、余弦相似度计算
def get_similarity_score(first_image : str, second_image : str):
"""
-----------------------------------------------------
Takes image array and computes its embedding using VGG16 model.
-----------------------------------------------------
return embedding of the image
"""
first_image = load_image(first_image)
second_image = load_image(second_image)
first_image_vector = get_image_embeddings(first_image)
second_image_vector = get_image_embeddings(second_image)
similarity_score = cosine_similarity(first_image_vector, second_image_vector).reshape(1,)
return similarity_score
#、图像显示
def show_image(image_path):
image = mpimg.imread(image_path)
imgplot = plt.imshow(image)
plt.show()
#、两个图像的比较
# define the path of the images
sunflower = '/content/sunflower.jpeg'
helianthus = '/content/helianthus.jpeg'
tulip = '/content/Tulip.jpeg'
# use the show_image function to plot the images
show_image(sunflower), show_image(helianthus)
然后,我们将这些函数应用于一组图像,并使用各种技术将结果可视化。 总体而言,该项目展示了如何利用 VGG16 等深度学习模型来执行复杂的图像分析任务并从视觉数据中生成见解。 网友回复
webgl与webgpu有啥不同?
Zero Trust的Tunnels怎么设置泛域名解析及http服务获取当前访问域名?
Spec Coding(规范驱动编码)和 Vibe Coding(氛围编程)有啥区别?
如何在国内服务器上正常运行未备案的域名网站?
Cloudflared 和WARP Connector有啥不同?
有没有让本地开源大模型越狱的方法或插件啥的?
如何使用Zero Trust的Tunnels技术将局域网电脑web服务可以公网访问呢?
编程领域ai大模型的排名是怎么样的?
如何修改别人发给我的微信笔记内容?
fbx、obj、glb三维格式模型如何在浏览器中通过three相互转换格式?


