通过“威胁AI”(如输入对抗性指令或恶意内容)试图增强模型能力缺乏科学依据 ,且可能适得其反:
对抗性攻击的局限性 :
大模型的训练数据通常来自海量历史积累,单个用户的输入对模型参数影响极小。
若攻击者试图通过“威胁”或恶意指令污染训练数据(如投毒攻击),需长期、大规模注入数据才可能影响模型行为。
模型的安全机制 :
主流AI平台会过滤异常输入,并定期更新模型以抵御攻击。例如,OpenAI会对滥用行为进行监控,并在30天后删除未授权的训练数据。
结论 :单次“威胁”或对抗性提示对模型能力提升无效,且可能被平台识别并拦截。模型的安全性和训练数据质量主要依赖平台的防护机制。
网上所谓的ai提示词增强几乎是骗子,大家要小心。
网友回复
有没有免费让ai自动帮你接管操作电脑的mcp服务?
mcp为啥用Streamable HTTP 替代 HTTP + SSE?
scratchjr有没有开源的前端html网页版本源代码?
多模态大模型能否根据ui交互视频来来模仿写出前端交互动画效果ui代码?
如何用阿里云oss+函数计算fc+事件总线EventBridge+消息队列+数据库+redis缓存打造一个高并发弹性系统?
阿里云函数计算 FC如何在海外节点搭建一个代理网络?
ai studio中gemini build的代码如何发布到github pages等免费网页托管上 ?
如何在cursor、qoder、trae中使用Claude Skills功能?
有没有不用u盘就能重装系统的开源工具?
python如何固定摄像头实时计算停车场停车位剩余数量?


